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Gravitational waves in general relativity
XIV. Bondi expansions and the
‘polyhomogeneity’ of ¥

By PioTrR T. CHRUSCIEL!, MALCcOLM A. H. MACCALLUM? AND
DAVID B. SINGLETON?

! Maz Planck Institut fiir Astrophysik, Karl Schwarzschild Strasse 1,
D-85740 Garching bei Minchen, F.R.G.
2School of Mathematical Sciences, Queen Mary and Westfield College,
University of London, Mile End Road, London E1 4NS, U.K.
3 Supercomputer Facility, Australian National University,
Canberra A.C.T. 2601, Australia

The structure of polyhomogeneous space-times (i.e. space-times with metrics which
admit an expansion in terms of r~7log’r) constructed by a Bondi-Sachs type
method is analysed. The occurrence of some log terms in an asymptotic expan-
sion of the metric is related to the non-vanishing of the Weyl tensor at .#. The
validity in this more general context of various results from the standard treat-
ment of .#, including the Bondi mass loss formula, the peeling-off of the Riemann
tensor and the Newman—Penrose constants of motion, is considered.

1. Introduction

In general relativity an important question is: what does the gravitational field
of a radiating asymptotically Minkowskian system look like? The answer to that
question proposed by Bondi et al. (1962), Sachs (1962) and Penrose (1965) seems
to have been adopted by researchers (cf. Wald 1984; Newman & Tod 1980), in
spite of the wide evidence against this proposal: indeed it has been suggested both
by the analysis of Christodoulou & Klainerman (1993) and by various approxi-
mate calculations (cf. Damour (1986) and references therein) that such systems
generically do not satisfy the Bondi-Penrose-Sachs asymptotic conditions. In
a recent study (Andersson & Chrusciel 1994a; cf. also Andersson & Chrusciel
1993; Andersson et al. 1992) of the asymptotic properties of solutions of con-
straint equations on spacelike hypersurfaces intersecting ‘¢’ transversally it has
similarly been observed that generic Cauchy data constructed in such a setting
by the ‘conformal method’ failed to be smoothly extendable, after appropriate
rescalings, to the conformal boundary. More precisely, it has been shown (cf. An-
dersson & Chrusciel 1994a,b for more details) that, when considering Cauchy
data constructed by the conformal method with smooth up to boundary ‘seed’
fields and with the condition tr K = const. # 0, one has:

(i) generically, for such data no conformal factor (2 exists for which the shear
of .# in the metric 22y vanishes at 0%; by the vanishing of the shear of .# we
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114 P. T. Chrusciel, M. A. H. MacCallum and D. B. Singleton
mean the somewhat stronger statement that

AS Q’j =0 (1.1)
(recall that in the case of C?(M) metrics the existence of an 2 such that (1.1)
holds follows from the vacuum field equations (cf. Wald 1984));

(ii) consider those data for which the shear of .# vanishes for appropriately
chosen (2. Generically, for such data the Weyl tensor of 2%y does not vanish at
#. (Recall that for vacuum metrics v such that 022+ is C? up to boundary on M
the vanishing of the Weyl tensor of 2%y at .# follows by a theorem of Penrose
(Penrose 1965; Penrose & Rindler 1986; Geroch 1977).)

The results obtained by Andersson & Chrusciel (1994a) seem to indicate very
strongly that a consistent set-up in which the gravitational radiation field can
be described in generic situations is that of manifolds (M,7), ¥ = 2%y with
metrics 4 which are not smooth but polyhomogeneoust near #. (A function f
is called polyhomogeneous if it admits an expansion in terms of =7 log’ r rather
than =7, cf. Appendix A for a more precise definition.) The object of this paper
is to show that at least part of the results described above can be obtained in a
rather simpler way in a Bondi—-Sachs type setting, as set out in earlier papers in
this series (Bondi et al. 1962; Sachs 1962; van der Burg 1966; these are referred
to here as Papers VII, VIII and IX, respectively).

In §2, we show that the hypothesis of polyhomogeneity of .# is formally con-
sistent with the Einstein equations. (Note, however, that thanks to the important
theorems of Friedrich (1986, 1988, 1991), together with the results of Andersson
& Chrusciel (1994a) and Andersson et al. (1992), a large class of space-times sat-
isfying the Bondi—-Penrose—Sachs conditions is now known to exist. On the other
hand no proof that the Cauchy problem is well posed for polyhomogeneous but
not smooth initial data of ‘hyperboloidal’ type is available yet.) We show that
the characteristic initial value problem of Bondi-Sachs type is formally well posed
in the space of polyhomogeneous metrics, in the sense that the (retarded) time
derivatives of the fields on the initial data hypersurface are polyhomogeneous if
the free initial data are (with the same ‘degrees of polyhomogeneity’ when these
degrees are chosen appropriately; cf. §2 for details), and, in a manner completely
analogous to that of the original Bondi-Sachs analysis, that one can write down
a hierarchy of evolution equations for the coefficients of the polyhomogeneous
expansion of the free data.

In §3 we show that in the class of space-times considered in this paper the
conformal factor {2 can always be chosen so that (1.1) holds. Thus, Cauchy data
incompatible with (1.1) cannot lead to a space-time of the type considered here
(cf. Andersson & Chrusciel (1994b) for a similar result in a somewhat different
setting). We prove that initial data, constructed by a Bondi-Sachs procedure
starting from free data smooth at .#, will be smooth at .# if and only if the
free initial data are such that the Weyl tensor of 2?4 vanishes at .#. We find
that the Trautman-Bondi mass loss formula (Trautman 1958; Bondi et al. 1962;

t The term polyhomogeneous seems to have been adopted in the mathematical literature for the
kind of expansion considered here (cf. Mazzeo 1991). Gel'fand & Shilov (1964) use the term associated
homogeneous for a similar notion. The members of the Garching relativity seminar have suggested use of
the term polylogarithmic for this kind of expansion. Winicour (1985) uses the term logarithmic asymptotic
flatness in a somewhat similar setting.
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Gravitational waves in general relativity. XIV. Polyhomogeneity 115

Sachs 1962) remains unchanged in the polyhomogeneous case; thus the Bondi
mass is still well defined, and is a monotonically decreasing function of retarded
time}. We also note that for a class of polyhomogeneous metrics the peeling-
off property of the Riemann tensor is the same as the one for smooth metrics
up to O(r=27¢), 0 < € < 1, terms. We show that some quantities built out of
the restriction of the Weyl tensor to .# are (in general nontrivial) constants of
motion, as already noted by Winicour (1985) and by Christodoulou & Klainerman
(1993). More generally, we find (in §2) that the ‘leading log coefficients’ of the
polyhomogeneous expansion are constants of motion. We argue, from an explicit
calculation in the axisymmetric case, that the Newman—Penrose constants of
motion (Newman & Penrose 1965; Penrose & Rindler 1986) cease to be constants
of motion in generic polyhomogeneous situations, although our example does give
a new constant of the motion. (It could, therefore, be that some new functionals
of the field, which reduce to the Newman—Penrose constants of motion when .#
is smooth, are constants of motion in the polyhomogeneous situation. We do not
have an answer to that question.) Section 4 considers the construction of Bondi
coordinates in our more general setting.

The results of our analysis show that the presence of some logr terms in an
asymptotic expansion of the metric is quite natural, and does not lead to any
serious extra difficulties in the analysis of the geometry. Recall that the imposition
of the conditions which lead to the vanishing of the log terms was interpreted
in some earlier papers of this series as an outgoing radiation condition (Bondi
et al. 1962; Sachs 1962; van der Burg 1966). Two concerns had to be addressed:
the possibility of advanced rather than retarded solutions, and the possibility of
retarded waves travelling in the inward radial direction but at indefinitely large
distances. With the help of our present understanding of .#, it is clear that if
71 is well-defined, as it is here, there is no advanced wave involved, and that a
space-time has purely outgoing radiation if and only if there is no radiation at #~
(cf. also Leipold & Walker (1977) for a similar point of view and for explanation
of the difficulties that arise with local characterization of incoming and outgoing
parts of the field even for linear theories in flat space). Since the space-times
discussed here can satisfy both these requirements, we can safely abandon the
‘outgoing radiation’ condition of Bondi et al. (1962).

Moreover, we note that there exists a family of electrovacuum ‘small data’
space-times constructed by Cutler & Wald (1989), and also a family of ‘small data’
Einstein—Yang—Mills spherically symmetric space-times constructed by Bartnik
(1992), which have the following properties: they possess a smooth #* and a
smooth .#~, and decay to a smooth 7™ in the future and a smooth ¢~ in the
past. Because the metric decays smoothly both in the future and the past there
is both outgoing and incoming radiation in those space-times. Since both #s are
smooth, the ‘outgoing radiation condition’ holds at .#*, and an analogous ‘in-

1 More precisely, for all polyhomogeneous metrics there is a quantity which we call the Bondi mass,
which is a nonincreasing function of retarded time, and which reduces to the quantity defined by Bondi
when Bondi’s hypotheses are satisfied. We believe that the ‘real mass’ should not be defined ad hoc, but
by a limiting procedure involving perhaps the Freud ‘superpotential’ for Einstein’s energy, as done e.g.
by Trautman (1958). If one does that, we expect that one will find equality of the quantity we define as
the Bondi mass with the quantity obtained from the limiting procedure only when V has no log" terms,
i.e. when the logarithmic terms in V start at the »—* level, with some i 2> 1. A precise formulation of
such statements lies outside the scope of this paper.

Phil. Trans. R. Soc. Lond. A (1995)
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116 P. T. Chrusciel, M. A. H. MacCallum and D. B. Singleton

coming radiation condition’ holds at .#~, which is clearly absurd. These examples
show that not only is the vanishing of the log terms at .# unnecessary to ensure
‘outgoing radiation’, it also does not prevent incoming radiation. We conclude
that the association of the absence of logr terms with ‘outgoing radiation’ lacks
justification, and that a better formulation of an ‘outgoing radiation’ condition
could probably be given in terms of constancy of the Bondi mass at .#~.

In the discussion above we have adopted what we consider to be now a stan-
dard notion of ‘incoming’ and ‘outgoing’ radiation. In particular, it is clear, from
the hyperbolic nature of the Einstein equations, that whenever a conformal com-
pletion of the space-time exists in which the conformal boundary is an incoming
null topological surface, then there can be no influx of gravitational radiation
(or, for that matter, of any non-tachyonic matter fields) through the surface in
question. Thus, the existence of a conformal completion of the above described
nature guarantees that we have an isolated system evolving in a self-consistent
way, regardless of whether or not the fields are asymptotically Minkowskiant,
regardless of the decay rates of the fields towards the conformal boundary, the
degrees of differentiability of some perhaps conformally rescaled fields at the con-
formal boundary, etc. In view of that observation it might not be so surprising
that for the polyhomogeneous #s considered here the Trautman-Bondi mass-loss
law holds, regardless of the occurrence of some perhaps high powers of logr in
the 1/r terms in the metric.

It should be pointed out that several of the results discussed here have already
been observed in a similar setting by Winicour (1985). (However, we learned
about this paper only after most of the work presented here was completed. Also
it seems that in Winicour (1985) emphasis is put on somewhat different issues.) In
this context one should also mention the results of Novak & Goldberg (1982) (cf.
also Couch & Torrence 1972; Moreschi 1987), who perform a somewhat similar
analysis of the Newman—Penrose equations on a null initial hypersurface. We
have been informed by R. J. Torrence and W. E. Couch that the occurrence of
log terms and the associated constants of motion had been observed by them a
long time agoi. Recently polyhomogeneity of null infinity has also been observed
for cylindrically symmetric space-times in Ashtekar et al. (1994), and for infinite
rotating discs in Bicék et al. (1993).

The approximate results reviewed by Damour (1986) referred to earlier include
several papers in which logarithmic terms similar to those we consider appear.
In addition there are early results of Bonnor & Fock (1957, 1959) in which log-
arithmic terms arose (only to be removed, in Bonnor (1959), by a coordinate
transformation). To give a full analysis of those papers in the more rigorous
spirit of the present work would be an interesting but lengthy task, so we note
only that, for example, such terms also did not arise in the further work on the
double series approximation (Bonnor & Rotenberg 1966).

We leave it an open question which precisely of the log terms which appear
in our expansions can be removed by a coordinate transformation. It should,

t As pointed out below, several results proved in this paper (in particular the self-consistency of
the polyhomogeneous set-up) will still be true if the ‘sphere of null directions’ S? is replaced by an
arbitrary two-dimensional, perhaps but not necessarily compact, manifold M?2. Examples of vacuum
space-times with such an asymptotic structure (and actually a smooth .#) are given by, for example,
some Robinson—Trautman space-times.

1 R. J. Torrence and W. E. Couch, unpublished. Personal communication from R. J. Torrence.
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Gravitational waves in general relativity. XIV. Polyhomogeneity 117

however, be pointed out that all the log terms have a geometric character on
a fized initial hypersurface, in the sense that the Bondi coordinates on a fixed
hypersurface are uniquely defined. Moreover it follows by function-counting that
most of the log terms cannot be removed by deforming¥ the hypersurfaces u =
const., as those deformations can be parametrized by the single function « at .#,
cf. §4. Moreover, for purely geometric reasons, it should also be emphasized that
those log terms which we have tied to the non-vanishing of the Weyl tensor at .#
cannot be removed by a coordinate change.

2. The Bondi-Sachs characteristic initial value problem

In this section we shall consider the initial value problem for space-times (M, )
with a metric of the form

Ve

Yo dat dz” = — du® — 2e*? dudr + 7% hop(dz® + Udu)(dz® + Udu). (2.1)

7.
We shall mainly be interested in the behaviour of v on the hypersurfacef

N={u=0,r>R, z* € §°},

where S? is topologically a two-dimensional sphere. (The question of the existence
of coordinate systems in which an asymptotically Minkowskian metric takes the
form (2.1) is considered in §4.) As has been analysed by Bondi et al. (1962) in the
axisymmetric case and by Sachs (1962) in general (cf. also van der Burg (1966)),
to construct a vacuum metric of the form (2.1) one has to prescribe on N the
family of metrics h(r) = hap(r, 2%) dz® dz® on S? parametrized by r, the family of
vector fields U(r) = U%(r, z%)8, on S* parametrized by r, and the scalar fields V'
and (3. These quantities are not freely specifiable but have to satisfy constraint
equations:

V XeTN, R, k" X" =0, (2.2)
where k# is any null vector field tangent to N (e.g. k#0, = 0,). As has been
emphasized in Bondi et al. (1962) and Sachs (1962), the equations (2.2) do not
impose any restrictions on hg, dz®dz®, and in fact can be viewed as equations
which together with appropriate boundary conditions determine V', 8 and U* 9,
given h,, dz® dz’. In Bondi et al. (1962) and Sachs (1962) it was shown that if
we assume h,, € C*(N) and moreover

~

R hl a a ha a 1
hab(r,x“) — hab(xa) + ab('r ) + a(a: ) 2b(x ) +0 <_§>, (23)
r r r
for some functions hgy(z?), hl,(2*), a(z®), then we will obtain
Ohap -
-2 a a 00
r V,ﬂ,U,——au € C*(N).

In Bondi et al. (1962) and Sachs (1962) the absence of trace-free 7=2 terms

€ This argument is valid of course only if one does not make any supplementary hypotheses, such as
staticity of the space-time in the far past, etc.

t Most of the analysis presented here goes through when S? is replaced by any two-dimensional,
compact, orientable manifold 2M.

Phil. Trans. R. Soc. Lond. A (1995)
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in (2.3) was termed the ‘outgoing wave condition’. This condition was imposed
a priori in Bondi et al. (1962) and Sachs (1962) because the occurrence of the
trace-free terms led to r~7 log'r terms in U®,V and subsequently in Ohg;/0u
— this in turn led to 77 log' r terms in h,, at any later moment of time. It is
therefore clear that a correct set-up for analysing the characteristic initial value
problem for metrics of the form (2.1) is that of metrics hq, dz?® dz® which are
polyhomogeneous to start with (i.e. admit an asymptotic expansion in terms of
r~7 log’ r). It is the aim of this paper to re-examine both the constraint and the
evolution equations for metrics of the form (2.1) in a polyhomogeneous set-up.

Before proceeding to a detailed analysis of the Einstein equations, let us first
consider the question of the boundary conditions satisfied by the fields under con-
sideration. Let therefore a polyhomogeneous metric h,, dz® dz’ (see Appendix A
for precise definitions) be given, and suppose moreover that h,, € C°(N) (if we
write hq, € A then the hypothesis hy, € C°(N) is equivalent to the condition
Ny = 0). It follows that the limits

~

hab = lim hab
T —00

exist, with he, € C®(S2). As is well known, (cf. Christodoulou & Klainerman
(1993) for a simple and elegant proof) there exists a diffeomorphism @ : §? — S2

such that we have ®*h = ¢* h, where 0 < ¢ € C*°(52) and h is the standard
round metric on S2,

By dz® dz® = d6? + sin® 6 d?. (2.4)
Replacing (r, z*) by (7,z*) = (¢r, *(z")) one obtains a metric of the form (2.1)
in which (dropping bars on 7, z%)

lim Ay, dz® dz® = df? + sin® 6 dy?. (2.5)

™00

It is not too difficult to show from equations (2.2) (which are written out in detail
in Appendix C) that under the condition hy, € Ay, the limits,

H = lim f, (2.6)
X?=-lim U*, (2.7)

exist, with H, X* € C*(5?). Suppose for a moment that there actually exists
a space-time with a metric of the form (2.1) on a set U, = {u € (—¢,€), r >
R, z* € S?} with some € > 0. (We should stress that in all the results obtained
in this section the hypothesis of the existence of an evolution of the initial data
defined on U, for some ¢ > 0 is not necessary. This is due to the fact that all our
analysis involves only equations on N'). Let ¥(u, z*) be the one parameter family
of diffeomorphisms of S? generated by the vector field X = X°9,; we thus have

v (u, 2], = 27,

o (u, 2°) /Ou = X*(u,b°(u, z*)).

It is easily seen that the coordinate transformation (u,r,z*) — (4,7, z%) =
(u,7,Z%), with z* implicitly defined by z® = *(u, "), leads to a metric of the

Phil. Trans. R. Soc. Lond. A (1995)
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form (2.1) for which we have

lim U =0, (2.8)
The above argument shows that the vector field X* 0, defined by (2.7) has a
gauge character, at least from a four-dimensional point of view. It should also be
pointed out that the transformations leading to (2.5) and (2.8) are compatible
with an initial value set-up, because they do not deform the initial hypersurface
N in space-time. This shows that there is no loss of generality in assuming that
(2.5) and (2.8) holdf.

It is natural to ask whether H defined by (2.6) can be removed by an appropri-
ate choice of gauge. As shown by Bondi et al. (1962) in the smooth axisymmetric
case, and as shown in §4 in the general polyhomogeneous case, the condition

Tli_’r{.lo B8=0 (2.9)
can always be achieved, at the price, however, of deforming N in space-time. Since
it is our goal to analyse an initial value problem in which a null hypersurface N is
given, we shall not assume that (2.9) holds unless explicitly specified otherwise.}
(We will, however, find it useful to impose (2.9) when discussing the physical
properties of the four-dimensional space-time. This is clearly justified by the
results of §4.)

Let us show that polyhomogeneity of h,;, implies that of 8, U,V and dh,,/0u:

Prop051t10n 2.1. Given any sequence {N;}32,, No = 0, there exists a sequence
{N }o0, with No=0, N, =N, N; > Nz, such that for all hy, € AN} N C°(N)
satisfying lim, e Ay dz® dz® = d6? + sin® @ dp? we have

(i)

B,U% 72V € Apng NCO(N); (2.10)
(ii) If moreover
lim U*=0 (2.11)
holds, then we have, for any j > 0,
r V€ Appy N CON), (2.12)
2\’ . _
(5&) hay € AN N CON). (2.13)

Remarks. 1. It is rather clear from the gauge character of lim,_,, U® that (2.11)

is not necessary for (2.13) to hold, with possibly a different sequence {N;}. We
have indeed verified this explicitly in the axisymmetric case (the validity of (2.13)
is in this case guaranteed by a cancellation of some ‘dangerous terms’ which occur
in the equation for Oh,,/0u). It should be noted that, assuming the initial value

1 More precisely, there is no loss of generality in assuming that (2.5) holds, and there is no loss
of generality in assuming that (2.8) holds provided the time-development of the data is sufficiently
regular asymptotically in some neighbourhood of A (e.g. polyhomogeneous) to be able to perform the
construction which leads to (2.8).

1 Cf. also Hogan & Trautman (1987) and Hogan (1985) for an analysis in which (2.9?) is not assumed
to hold, motivated by rather different considerations. The function e here corresponds precisely to the
function pg = lim, oo p of Hogan & Trautman (1987).

Phil. Trans. R. Soc. Lond. A (1995)
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problem for polyhomogeneous data on A can be solved, the u-dependent terms
arising when lim, ., U* # 0 would lead to a u-dependent limit of h,, differing
from the round metric on surfaces other than N. This can also be seen from
inspection of the transformation used above to remove X°. It does not affect the
Proposition above which applies only on N.

2. Assuming the characteristic initial value problem for polyhomogeneous data
can be solved in the space of space-times with a polyhomogeneous .7, one way of
understanding the signiﬁcance of the relation between the {N;}°, and {N;}5°, se-
quences is that if we are given initial data in a space characterized by the sequence
{N;}22,, then the sequence {N;}>°, can be chosen to be the one appropriate to
the evolution of that initial data. Sequences {N; }2, characterize those spaces
which are invariant under evolution governed by the vacuum Einstein equations.

Proof. Replacing h,;, by
sin @

— h,
vV det hab ’

and r by

vV det hab
" sin @
we may without loss of generality assume /det h,, = sinf. A simple but some-
what tedious analysis of the equations of Appendix C, making use of Proposi-
tion A.1 in Appendix A, gives the following: the limits lim, o, £, lim,_. U?,
exist and are, respectively, a smooth function and a smooth vector field on a
sphere. We define

H = lim £, X% =—lim U°,

T— 00

Y = 20D H, (2.14)
where D° is the covariant derivative with respect to the metric

h = lim hey dz®dz® on S2.

T 00

We then have

/B -H € Aphg/TZ, (215)
U+ X — %1 € Apng /7, (2.16)
r 2V e Ay NCO(N). (2.17)
Let us also define
¢ =e" (14 2A,H +4|DH|}), (2.18)

where Aj; is the Laplacian of the metric h, and | - | i, denotes the norm in h. If
moreover lim, ., U* = 0, it follows that

V —r € Ay, (2.19)

Ohay  C(5%)  Appng
du S r * rz’
In the above analysis the only not entirely trivial step is to prove (2.20). Indeed,

(2.20)
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equations (C5) and (C6) take the form

0
% + fo2 =G, (2.21)
0
P o=t (2:22)
where, using the notation of van der Burg (1966) and Appendix C,
Oy 08 Oy

¢1 = rcosh(26) pa=1 W f = 2sinh(206) (2.23)

ou’ or’
and the ¢,, a = 1,2, can be found in Appendix C. The hypothesis hy, € AP N
C°(N) is equivalent to y,8 € AP" N C°(N), so that from (2.15)—(2.18) one finds
rfy o € Apng/7°, a=1,2. (2.24)
It is an exercise in ODEs to show that under (2.24) any solution of (2.21)—(2.22)
is necessarily polyhomogeneous, with
¢a € CP(S?) + 77" Appg-
(The result can be proved by, for example, setting up a contraction principle
argument? in weighted spaces of the kind used in Appendix B.) This implies
ahab

u er! COO(SZ) +r? .Aphg,

as claimed. _
To prove our claim about existence of self-consistent sequences {N;} which

have the property that h,, € AN} g formally preserved under time evolution,
define

N = Ny,
so that
|hap — hap| = O(r~* log™ 7).

Consider a term, say X, in hg, which has a radial behaviour r—* logj r. From
the equations of Appendix C one easily finds that such a term produces terms
=1 log" ™ r 4 lower order in 8. Next, if i = 2, such a term will produce
terms 773 log’™ r 4 lower order in U®, while for i # 2 it will lead to terms
r~i=1 log’ r + lower order in U®. Using the Kronecker §° defined as usual by

{1, for a = b,

a,beR 8 =
’ ’ 0, otherwise,

a

we conclude that x produces terms r~~1log’ +87 1 1 lower order in U?. There

is a cancellation in the equation for V' which implies that if ¢ = 1 and N (=

§) = 0, x will generate terms r—! logl\7 ' r 4+ lower order in V, rather than the
logr + lower order terms which would have appeared if the cancellation had not

1 It has been pointed out to us by R. Bartnik that the result can be easily established by replacing
(2.21)~(2.22) by a single complex equation for the function ¢; + +/—1 ¢2.

1 By ‘lower order’ we mean terms which have the same power of 7~! and smaller powers of logr, or
higher powers of 1.
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122 P. T. Chrusciel, M. A. H. MacCallum and D. B. Singleton

taken place: here N, is determined by N, (Nl = 0 if N, = 0). In general, the
cancellation implies that the leading term in V arising from i =1 and N > 0 is
of order log"™ 7, while the leading contributionq from Y is of order r'~*log’ +o}
Inserting all th1s information in the equations for Oh,;/0u one in general obtalns
a contribution 717 log’ 81 1+ lower order from X, but an ¢ = 1, N > 0 term
contributes|| only a term of order r—2log" ' r

To construct a sequence {N;} given a sequence {N;}, set N; = N;j. Then from
the equations for Oh,,/Ou one obtains, if Ny > 0,

1 a
5% (hab - M) = O(r‘z Jog™M? r) , (2.25)
for some hl,(u,z*). If Ny = 0, the next contributions to the u-derivatives of the
~ and & used in Appendix C are O(r—3 log™2t? r), which implies that the time
derivative of the trace-free part of hg, — hl,(u,z®)/r is O(r~3log™* ™ ) on the
other hand, the time derivative of the ‘trace part’ of hq, — hl,(u,z*)/r is O(r—2)
and is determined uniquely by the u-derivatives of hl,(u,z*). (2.25) shows that
the coefficients of the =1 log’r, i = 1,...,N; are constants of motion, and if we
set Ny = max(N,, N; — 1) then the space A} will be formally preserved by
evolution up to O(r=3*¢), € > 0, terms. Proceeding recursively one can construct

a self-consistent sequence {Ni}. The analysis of the higher u-derivatives proceeds
in a similar manner by considering the equations obtained from the Einstein
equations by u-differentiation, and the result follows. |

From what has been said in the proof above it should be clear that if we write,
along N,

oo N;
hav ~ YD hijas(0,0) 77 log” 1,
i=0 j=0
then on AV from the Einstein equations one obtains a Bondi-van-der-Burg-Metzner
type hierarchy of equations

ahijab

au — L4jabs
where Fjjq; is a function of 8, ¢ and the hygeq, 0 < k <7 —1 together with a finite
number of their derivatives. In particular, if we assume that a polyhomogeneous
expansion of the metric also holds in a neighbourhood of A/ one obtains:

Proposition 2.2. Under the hypotheses of Proposition 2.1, including (2.11),
we have: _
(i) The coefficients of r~! log’ r, 1 < j < Ny, in h,, are constants of motion.

€ The radial behaviour r!—* 10g1+5¢2 r is obtained here by a SHEEP calculation. It seems that knowl-
edge of some cancellations for ¢ = 1 is necessary for the argument to hold. Nevertheless for i > 1 a
straightforward analysis of the V equation (C4) yields a leading order contribution 7!—* logj'*"sil""si2 r
to V from x, without going into the details of the cancellation structure of the equations (which SHEEP
automatically does). One could use this estimate of the contributions of x to V in the remainder of the
argument to prove Proposition 2.1, with a perhaps somewhat ‘worse’ sequence N;.

|| This exponent is, again, obtained using SHEEP. Analytically it is more or less straightforward to
estimate the right-hand side of (2.25) as O(r~2 logN11! 7). Such an estimate would be sufficient for the
main conclusion to remain valid.
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(ii) Suppose that Ny = 0. Then the coefficients of r=2 log’ 7, 1 < j < Ny = Ny
in h,, and the coefficients of 2 in the trace-free part of the h,, are constants of
motion.

(iii) Suppose that on N' we have

: hay(2%) a(xa)ﬁab(xa) -3 7. N3
hap — TI—LIE"O hop = " -+ 2 + 0 (r log r) , (2.26)
with Egb given by (2.4), and that Ny = ... = N; = 0, i > 2. Then we can set

N; =N;,j=0,...,i+1 and the coefficients of r=*~' log’ r, 1 < j < Niy1 = Nipy
in hg, are constants of motion.

Remarks. In the notation of van der Burg (1966), (2.26) is equivalent to
y=c/r+0(r2log™r), 6=d/r+0( log"*r).

Note that the time dependence of the »~! contributions to h,; is undetermined

by the above considerations, which are purely asymptotict. In §4 we show that
the only remaining coordinate freedom is given by the BMS group, which implies
that we have only one arbitrary function of § and ¢ available for changing the
values of the constants of motion just obtained, so that not more than one of
them (if any) can be set to a fixed value.

It is natural to consider extending the second result in the Proposition and ask
what is the ‘smallest’ self-consistent sequence NV; if NV; = 0 for all 7 and it is not
assumed a priori that (2.26) holds. When lim, .., U* = 0, one easily obtains,
from what has been said earlier, that we can set

NO=N1=N2:O, Ngz].

Moreover in such a case the arguments of the proof of Proposition 2.1 show that
we will have

Be AN NE=NP=N{/=N{=0, N=1,
Ut e AN NV =N/ =NY =0, NY =1,
V-reA™} NV =y, NY =1.
In asymptotically Minkowskian coordinates
(t,z,y,2) = (u+r, rsinfcos ¢, rsinfsin @, rcosb);

this corresponds to a metric (2.1) which along N approaches the Minkowski one
as

_ Y, Yy logr

2
’yl“/ —2—¢€
Yuvr — Nuw = 7_ + 2 +72’"+O(7’ ), € > 0.
The results of Proposition 2.1 can be generalized to include both matter fields
and rather weaker asymptotic conditions. Let us start by defining a space of

functions C**: for u, A € R a function f will be said to be in C¥*(N), or for

t These contributions define an analogue of what is called a ‘news function’ in Bondi et al. (1962) and
Sachs (1962), and should be determined by the behaviour of sources and/or of the gravitational field in
the interior, or perhaps by some interior boundary conditions, in a complete solution.
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124 P. T. Chrusciel, M. A. H. MacCallum and D. B. Singleton
short in C%*| if for all 4 € N and for all multi-indices o we have
10:0% f] < Ciar ™ (1 + |logr))?,

for some constants C; ,, where the coordinates v stand for 6, ¢. In order to avoid
in what follows a rather annoying discussion of some not so interesting special
cases we shall always assume that in all spaces considered if y = 1, 2, 3 or 4 then
the logarithmic behaviour exponent A satisfies A # —2, —1. We wish to show that
the space of metrics on A of the form

hab — hap € T7LAPPI £ CBA L >0 (2.27)

is formally preserved by evolution with the Einstein equations with possibly some
matter fields. Let us denote by {Lh.s.} , respectively by {r.h.s.} , the left-hand
side, respectively the right-hand side, of the nth equation of Appendix C. Then,
in the presence of matter the Einstein equations become

{Lhs.}, = {rhs.}, + LrTy, (2.28)

{Lhs.}, = {r.h.s.}, 4 2r2T}, cosec, (2.29)

{Lh.s.}, = {r-hs.}, + 2r2Tys, (2.30)

S?.% = {Lhs.}, = {rhs.}, — Le¥h*T,, (2.31)
e?f . .

{Lhs.}; = {rhs.}, + ?1—7"—(e_27T22 —e®sin"? 0 Tys), (2.32)
28 ) .

{th}6 = {I‘.h.S.}6 -+ m(ng — %thTcdhgg), (233)

where h% is the matrix inverse to hapy, T}, = & (T, — 1Tv,.), k is the gravitational
coupling constant, and 7),, is the energy momentum tensor of the matter fields.
We shall require

Ty € r 3 APh9  Crardn pa1 > 2, (2.34)

Tio € P72APM 4 Claedie, 0 =23, =13 >1, Ap=As,  (2.35)
R Ty € P72 APRI 4 Clodo 10 > 0, (2.36)

e sin 29 Th — e Ty € 1 APII 4 Ol 1 > 0, (2.37)

Tos — 2h“Tqhas € 171 APRI  Clir | (2.38)

where the various powers in front of AP*9 and the exponents in C#+*+ have been
chosen so that the leading order behaviour of the various functions which appear
in the metric coincides with the behaviour one observes in the vacuum case.
Assuming that lim,_,., f = lim,_,., U® = 0, an analysis as described in the proof
of Proposition 2.1 leads to

0 put+1,2462 pi1—1,A11+6%
'8—hab cr lAphg -+ Coo H 4 Coo a
u
B1a A1a+65 po+2,X0+6~ +N;
+ Coo e+ ClottA + Coo o (2.39)
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Gravitational waves in general relativity. XIV. Polyhomogeneity 125
It follows that for

w < min{,ufll - 17/Jfla7.u’r + 17.“’0 + 2}

(with appropriate inequalities for the \,s if the above inequality is an equality)
the Einstein equations will formally preserve the space of metrics h,; satisfying
(2.27). The proof of (2.39) follows immediately by integration of the equations
(2.28)—(2.33), and of the equations which are obtained by u-differentiation of
those. Step by step one obtains:

,6 c r—lAPhg + Cgo+1,>\+N1 + Cg011—2,/\11,
4

— }A+1,>\+62 p11—1,A11+6 Kla,A1 +63
Uecr 2Aphg+Coo M+COO ’ K11 +Cooa’ * ﬂla’

p—1,A+61 462 1o—1,A0+6%
V-re APP9 4 Co 7T 1 O Ko

p11—3,A11+6% 62 HU1a—2, 10 +62  +62

_I_ COO K11 K11 _+_ COO Hla l‘-la.;

the above equations inserted in the evolution equations (2.32)—(2.33) yield (2.39).
(If we assume that the appropriate decay properties are also satisfied by 877}, /Ou’
on N, j=0,...,J, then a preliminary examination suggests that 9'hy;,/0u’ will
also be of the form (2.39) for i = 0,...,J.) We note that the previous calcula-
tions on similar lines (Couch & Torrence 1972; Novak & Goldberg 1982) led to
upper bounds on the parameter p which do not appear here because, unlike those
previous calculations, we do not forbid the appearance of logr terms.

3. Gecometric interpretation

Consider a metric of the form (2.1). Following Penrose (1965) it is useful to

introduce a new coordinate
z=rt
so that by Proposition 2.1 when h,, € A" N C°(N) the metric

Yo dzt dz¥ = x? 7, de* daz”

= -V e du? + 2¢*° dudz + hep(dz® + U du)(dz® + UPdu) (3.1)

is polyhomogeneous on the set {x € [0,1/R], z* € S*}, i.e. there exists a sequence
{N,} and functions 7,,,:;(z*) € C*(S?) such that

o N;

S0 ’y,“,ij(a:“) iL’i logj Z, N() =0.

-

~

Y ~
%

1l

ol
<.

~

(When (2.26) holds and h,, € C®(N) one actually obtains N; = 0 for all 4,
and the metric (3.1) is in C°°(N). This corresponds to the standard Bondi-
Penrose—Sachs situation of a smooth .#.) We have the following result, which
is established by calculating the Christoffel symbols of the metric #?v,, using
SHEEP, and making use of vacuum Einstein equations for v,, in the first leading

orders:

Proposition 3.1. Consider a characteristic initial data set with hq, € Appg N
CON), lim, _ o hap = dB? + sin® §dy? and lim, o, U® = 0, and set 2 =z = r~'.
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We have
lim V.Vp2 =0, a,b=2,3, (3.2)
where V is the covariant derivative of the metric Vo = xzfy,“,. If moreover
lim,_o 8 =0, then we also have
lim V.V,2=0, prv=0,..,3 (3.3)

Recall that the geometric meaning of (3.2) is the vanishing of the shear of the
hypersurface {z = 0} (cf. Wald 1984). Another interpretation of (3.2) is that
the conformal extrinsic curvature of .# vanishes, cf. the Appendix of Andersson
& Chrusciel (1994a). This property of .# is well known for 7,, € C®(N). It
should be stressed that for general polyhomogeneous metrics as constructed (on
N) in the previous section, the fact that the left-hand sides of (3.2)—(3.3) exist
and are bounded is a non-trivial statement which makes use of vacuum Einstein
equations to the first two leading orders, because equations (3.2)-(3.3) contain
derivatives of the metric which could potentially blow up as log ™z as 2 — 0.
Proposition 3.1 is the original observation which led to the proof in Andersson &
Chrusciel (1994b), that generic Cauchy data constructed by the conformal method
as in Andersson & Chrusciel (1994a) will lead to space-times which cannot admit
a polyhomogeneous #.

Throughout the remainder of this section we shall assume that

lim hg,daz®dz® = d6? + sin® 0 dp® =: hg,da®dz?, (3.4)

T—00

lim 8 =0, lim U* = 0. (3.5)

A textbook property of smooth #s is that the Weyl tensor of the conformally
rescaled metric vanishes at .# (cf. Wald 1984). A SHEEP calculation of the Weyl
tensor of the metric ¥,, dz* dz”, assuming that v,, is vacuum, gives:

Proposition 3.2. In addition to the hypotheses of Proposition 3.1, let hgy €

C?(N), and let (3.4)-(3.5) hold. In local coordinates define

. azhab Cd02hcd
Xab = lim ( 52 — Zh 522 hab>~

Let C.p,s denote the components of the Weyl tensor of 7 in the half-null tetrad
8° = e?du, 0" = 22°Vdu — dz,

6? = —(cosh§e? U’ + sinf sinh§ e "U?) du + cosh §e” df + sin 6 sinh e~ dop,

63 = —(sinh 6 e? U? +sinf cosh§e "U?) du + sinh § e”df + sin§ cosh § e~ de.
(3.6)
Then we have

lim Clats = Xab, (3.7)
while all the remaining components of lim,_q C’aﬂ,ﬂ; vanish, except of course
those which can be obtained by appropriate permutations of indices of C141p.

(Let us point out that Proposition 3.2 will still be true with non-vanishing Ricci
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curvature provided that (2.27) and (2.34)—(2.38) hold with o, ur > 1, 1, > 2,
W a1 > 3, and that the powers of r~! in front of the polyhomogeneous pieces in
T, in (2.34)—(2.38) are increased by one.) Proposition 3.2 shows that the Weyl
tensor of 7, vanishes at = 0 if and only if the trace free part of 0?hap /02| 1=0
vanishes, i.e. if and only if what Bondi et al. termed the ‘outgoing radiation
condition’; (2.26), holds. Let us also mention that (3.7) is equivalent to

l170|ac=0 = @1|m=0 = lj/2|ac=0 = @3Im20 =0, @4191:0 # 0,

where the ¥;s are the Newman—Penrose components of the Weyl tensor of the
metric 4 in a null tetrad related to the tetrad (3.6) above in the obvious way.

It is worthwhile emphasizing that it follows from Proposition 2.2, point 2, and
from (3.7) that the components C1,15(u, 0, 2%) are pointwise constants of motion,
i.e. independent of u. This result seems to have been already observed by Winicour
(1985), and independently by Christodoulou & Klainerman (1993) (under much
weaker asymptotic conditions).

Perhaps the most important result of the Bondi-Sachs analysis is the well
known theorem (originally due to Trautman (1958)) that Bondi’s mass is a de-
creasing function of u. For the metrics under consideration here, let us define
the Bondi mass as (—3) the integral over the sphere S? of the r° coefficient in
the expansion of V. This definition clearly reduces to the original one by Bondi-
Sachs, when the conditions imposed by Bondi and Sachs hold. We have found
that, under (3.4)—(3.5), and whatever the sequence {N;} and the h,, € AN}, the
mass loss eqn (35) of Bondi et al. (1962), which can be obtained by equating to
zero the integral over S? of the right side of (3.8), (cf. also Sachs 1962, eqn (4.16))
remains unchanged. This can be seen as follows: under the above conditions it
follows from the vacuum Einstein equations that

V —r, 2B, r’U® € APh9,

As has been shown by Sachs (1962) following the original observation of Bondi et
al. (1962), in the coordinate system of (2.1) we have (if the other field equations
hold)

Rypw=0 < lim T2R00 =0.

A SHEEP calculation gives
ov 0?hg. O*h oue
li 2 . H ZY _1l,4pabped ac bd 2Da ) )
Jim B = im (G = e A DG (69

where D, is the covariant derivative of the metric has. It is clear from (3.8) and
from what has been said before that those log terms which could contribute to
this equation, if any, drop out because their v derivatives vanish. It follows that
for all polyhomogeneous initial data the Bondi mass is a non-increasing function
of time whent lim,_., 8 =0.

We would like to point out that it is clear that the mass as defined above is the
‘correct mass’ for polyhomogeneous initial data hq, € AW} with Ny = N; = 0.
On the other hand we believe that some care should be taken when interpreting

t When lim,—oo B # 0, then the ‘mass aspect’ is no longer given by the standard Bondi-Sachs
expression. But monotonicity of an appropriately defined total Bondi mass of course remains valid.
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the above as the mass in the case N; # 0, since in that case the leading order
behaviour of V —r is logarithmic, which might reflect an infinite or ill defined mass
of the system. Such a possibility is also suggested by (2. 31) which shows that some
log terms mlght arise from 1/r terms in h“bTab Now in an orthonormal tetrad
in which €° is timelike one finds that T, = —kr TR+ T} = kr*(Too — T),
so that 1/r terms in he*T,, correspond to an infinite amount of matter energy: if
r?Too behaves as 1/r, then Ty, (the matter energy density) ceases to be integrable
over N. A thorough analysis of the conditions under which the mass at null
infinity is finite and well defined lies outside the scope of this paper.

It is natural to ask what happens with the ‘peeling-off’ property for space-times
for which (2.3) fails to hold. A SHEEP calculation shows that (in the vacuum case)
for any hg, € C°(N) N AP along N we have

1 2 3
Ra,@"/é + Raﬁ"/é + Raﬁ"/é lOg’T' + Raﬁ’y&
r r? rd r3

Raﬁ’y& = +oeey

with RaﬁwS and Ramé peeling off exactly in the same way as tlr.ley would if (2.3)
were satisfied, i.e. R4, is of type N, and R, s is of type III; in fact R}, s and
R?,. 5 are exactly the same as in the case considered by Sachs (1962) (cf. also
Trautman 1958) This follows from the fact that all terms which contribute to
R} 5.5 and R, s are u-differentiated, and those log terms which could potentially
contribute at this order are constants of motion. Here R% 5,6 May contain powers
of logr.

In the case 7,, € C®(N) it was observed in Newman & Penrose (1965, 1968)
that there exist some nontrivial global constants of motion for a vacuum gravi-
tating system. We wish to point out that these quantities cease to be constants
of motion even in the case in which h,, € C*®(N) if one does not assume that
(2.26) holds. Clearly it is sufficient to prove that assertion for those metrics (2.1)
which are of the Bondi—van der Burg-Metzner form (Bondi et al. 1962):

OV
hap dz® dz’ = €7 d6? + e ™27 sin® 6 dy?, (3.10)
U =0. (3.11)

Let us expand the function v appearing in (3.10) as

logr logr D
y=S4 R R B B S
r r rd
(The terms 73, and -4, above are necessary: even if vs1lu—0 = Ya,1lu=o = O
(which we are free to assume), we shall have 3, # 0 # 74,1 at later times in

general, as a consequence of the evolution equations.) In the axisymmetric case
with 7y, = 73,1 = 0 the constant of motion is given by (van der Burg 1966)

D= [ Dsin®60dpu,, dpo = sin 6 df de.
S2

If one takes the minimal sequence of N; as described in §2 and allows v, # 0,
one finds that the v;; and 7, terms (but not r~3log’ r or r~*log’ r with j > 1)
arise. After a long calculation it turns out that the u-derivative of the -y, term,
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when multiplied by sin® 6, is a total derivative with respect to 6 and, removing
further total derivative terms, one finds that the equation of motion for D takes
the form,

9D _ [ Gasd,
8u S2
where
G = {7, sin f] sin® § (—48°c/96* + 16 M — 10u + 4c)

—24sin 6 cos 6 Oc/0f — 16 cos® O c] + 15sin’ O3, }/12, (3.12)

0 —
Y31 = ’73,1' ,
u=0

and M is the usual Bondi mass aspect (i.e. —2M is the integration constant which
appears when integrating the V' equation (C4)).

For given M|,—o # 0, vs3,1|u=o0 (perhaps, but not necessarily, being zero) and
Clu=o it seems obvious from (3.12) that the function 72|,—o can be chosen so that
we have

8D/ Aulup % 0.

It must be pointed out that the above argument falls short of being a rigorous
proof: the function M has a global character, and in particular it might not be
independent of 2 |,—0 and 73 1|u=0. (Nevertheless the above calculation shows that
no obvious miraculous cancellations occur, and we find it completely implausible
that in, say, the vacuum case there exists some kind of conspiracy between the
functions ¥2|u=0, 73,1|lu=0, ¢ and M which leads to the identical vanishing of the
f-integral of G.)

It is curious, and not entirely unexpected, that in the axisymmetric polyho-
mogeneous setting there is a Newman—-Penrose type quantity which is again a
constant of motion. Define

Q =/ Yasin® 0 dpg . (3.13)
S2

As we show in Appendix D, Q is conserved by the evolution via the vacuum
Einstein equations. It seems clear to us that an analogous result will be true in
the general case, without assuming axisymmetry.

4. Existence of Bondi coordinates
Consider a metric v defined on the set
Upe, e, ={F > R, 1€ (C1,C), 3% € S}, (4.1)
and suppose that there exists 0 < € < 1 such that

for (2#2¥) = (44), (42®), (F2*) Yenzr € Aphgs |Yanav| < €71, (4.2)
Yia € Aphg, € < Yrg < €L, (4.3)

Yir € P72 Aphg, |#2y5s] < €7, (4.4)

Yavza € P2 Aphg, [P 2050 < €71 (4.5)
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Following Penrose (1965) let # := 7#~!, and set

~ A2
’}’#,j =T 7p.v~

From (4.1)—(4.5) it follows that the metric 7,, dz* dz” can be extended by con-
tinuity to a polyhomogeneous metric on the set

Vine e, ={0<E<1/R, € (C1,Cr), 3 € 5%} . (4.6)

Actually the conditions (4.3)—(4.5) guarantee only that the appropriately rescaled
functions #,, can be extended by continuity to the boundary, with the appro-
priately rescaled metric degenerating perhaps at the boundary. We thus add the
supplementary restriction that J,, dz® da® is non-degenerate up-to-boundary, and
that 4 is also non-degenerate with signature (— + ++) up-to-boundary, in a sense
which should be clear from what is said below. Define

I={2=0,0¢€ (C, ), i* € S?}.

Throughout this paper we shall suppose that .# is a null hypersurface; as in the
smooth case (cf. Wald 1984), in the polyhomogeneous case this will necessarily
hold if « is vacuum. Let @ be any smooth function on .#, and extend @ to a
smooth function defined in some neighbourhood of .# in any way. Let w, dz* be
any smooth nowhere vanishing one-form field defined in a neighbourhood of .#
such that w,X* = 0 for all X* € T'.#; from the fact that .# is null it is easily seen
that

A w,w,)|s = 0. (4.7)
On .# consider the one-form field
kul s dz" = aw,| s dz* + db (4.8)

with some function a; from (4.7) it follows that the equation
(3 kak)|r = (2057w, + 38,0, 5 = 0 (4.9)
(1, = 0u/0x*) will have a (unique) smooth solution a|s provided that
(A*w,1,)|s is bounded away from zero, (4.10)

which we shall assume to hold. (Note that (4.10) implies that k* = 4"k, will be
transverse to .#.) By Proposition B.1 point 1 for every (i,2%) € # there exists
a null geodesic z#(s, i, 2*) such that dz*/ds(0,4,2*) = k*|,. There also exists

a diffeomorphism 2% — #?(2%) such that in the coordinates (u,%%) we have at

=0

Fab|ueaodE?dE® = $2hepd2°dE® = ¢2(d6? + sin® 6 dy?),
where ¢ € C*(5?) is uniformly bounded away from zero. Let (u,s,z®) be ob-
tained by Lie dragging (i, £%) along the integral curves Z*(s,,2?). Thus if we
set k* = 0&# /s, then

ktu,, =0, u(0, 4, &%) = U, (4.11)
k'z®,, =0, (0,1, #°) = . (4.12)

By point 2 of Proposition B.1 and by the implicit function theorem there exists
a neighbourhood of .# on which (u,s,z*) form a coordinate system. As k* is
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tangent to null geodesics we have 7, k*k” = 0, so that
74(0/0s,0/0s) = 0.
It follows that in these coordinates 4 takes the form
Fwd2hdd” = Fydu® 4+ 29,,duds + Y (dz® + Udu)(dz’ + Udu).  (4.13)
Setting 7 = 1/s the original metric -y takes the form
Y AZH* dEY = 72y, du® — 2(F/F)*Fos dud? + 727,44 (dz® + U* du)(dz® + U® du),

where all functions in +,, are polyhomogeneous, after appropriate rescalings.

Finally define
@ b —1/4
r= [sin2 6 det (fy’“’ Oc” Oz )} . (4.14)

oz v
One easily finds
ar/d = ¢ + O(log™ 7/7)

for some N, so that there exist constants R, Cy, C such that (r,u,z®) as con-
structed above form a coordinate system on Ug ¢, c,, Where Ug ¢, ¢, is given by
(4.1) (in the coordinates (r,u,z*)). Going to this coordinate system from (4.14)
one concludes that

det(yq) = r*sin® 4.
In this way one obtains a metric of the form (2.1), which satisfies appropriate

Bondi requirements at u = 0. If one moreover assumes that v is vacuum, then
the Einstein equations imply

g (Jim ) =0
so that we have
rli_)rgo Aap = dB? + sin” 6 dp?
for all u € (Cy,Cs). As discussed in §2 we can achieve
lim U* =0

by appropriately propagating the coordinates z* away from the surface u = 0.
The above construction shows that the Bondi coordinates above are uniquely
determined by the choice of a function @& = u/| ,. Let us show that the freedom in
the choice of u| , can be considerably reduced if we require
lim g =0. (4.15)

To achieve (4.15), let @| , be given by
a(u, z%) = / M0 d to(z?)  (H = lim f), (4.16)
0

r—00

where o € C*(5?) is an arbitrary function. We can now repeat the construction
described above of a coordinate system (3, %,z*) based upon this function @l ,,
obtaining again a metric of the form (4.13) in this coordinate system. Let thus
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a vacuum metric v of the form (2.1) be given, and set 4, = r~2y,,, € = r *,
k* = A*vq,,; from the equality
| 50,0, = —2¢7*1 0,0, + h** 0,0,

by construction of k* we obtain

P
k4| 8, = —0, — e 2T 22| 9, + Dl 40, (4.17)
8.1' 7
with
o B
5| = sl (419
where D denotes the covariant derivative of the metric i on S2. We also have
oz* oz* oz°
_ —so. 9T _paegl,. 4.19
ou 7 ’ Ox? 7 b ox 7 U|] ( )

From the ‘barred’ equivalent of (4.14),

oz az*\] "
7 |ain2 wv
7 [sm 0 det (’y £ 89:”)] ,

and from what has been said one easily finds

im 21, tim 28 = tim 2T o, (4.20)

r—oo Jr r—oo Ou r—oo Or o

Equations (4.18)—-(4.20) show that in the coordinate system (@, 7, Z%) the metric
takes the desired form with

lim 8 = 0. (4.21)
It is worthwhile mentioning that the only freedom in the choice of coordinates
left at this stage is that of the function « in (4.16). Any two coordinate systems
(uy, 71, 2%) and (ug, 79, z5) which satisfy our requirements will have the property
that

a=(u —uy)ls
is a function of z® only, and the coordinate system (us, r9, z§) is defined uniquely

by a and by (uy,r;,z}). It follows that for polyhomogeneous metrics the asymp-
totic symmetry group is the BMS group, as in the smooth case.

Most of the work on this paper was performed when P.T.C. was visiting the Centre for Math-
ematics and its Applications of the ANU. P.T.C. also acknowledges the friendly hospitality of
the Department of Mathematics of Université de Tours during part of work on this paper. We
also thank Inge Frick, Jan Aman, James Skea and Anthony Hearn, the principal authors of the
software we used in this paper, and Professor W. B. Bonnor for supplying copies of Trautman’s
unpublished lectures of 1958 at King’s College, together with remarks on the history of the logr
terms in early papers. We thank Professor Sir Hermann Bondi, F.R.S., for permission to publish
this paper as one of the series he initiated.

Appendix A. Conventions, function spaces

We shall assume that all manifolds we discuss (which will have dimension
2, 3 or 4) are paracompact, connected, Hausdorff and smooth. The summation
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convention is used throughout this paper. Space-time is as usual taken to be
a Lorentzian four-dimensional manifold with signature (—, +, +, +) and metric
connection I'*,, where Greek indices run from 0 to 3; its Riemann curvature
tensor is defined by

R%pys = 03155 — 061 gy + 1'%y T g5 — I 6T 3y
and the Ricci tensor and scalar by
Rﬁg = Raﬁaﬁ, R = ngRIW'
With these choices the Einstein equations take the form
Ry — Ry = KT,

with a positive constant x.

In this paper we are considering asymptotic behaviour near null infinity. We
will use M to denote a manifold with boundary so that M = int M is a manifold
of dimension n and dM = OM is a manifold which will be assumed to have
a finite number of connected components OM;. By an abuse of terminology M
will also be said to be a manifold with boundary. As usual 7, M will denote the
tangent space to M at p; for p in M one has the notion of ‘half-tangent space
at p’ which is defined in a natural obvious way, and we shall still write T, M for
this space.

Throughout the paper z will denote a defining function for M, i.e. a function
satisfying z|sp = 0, z > 0, dz(p) # 0 for p € M, and the implication z(p) =
0= p € OM holds.

We can always choose a finite number of coordinate charts ¢; : O; — Rt =
{y e R* : y* > 0}, j =1,...,J, covering a neighbourhood of M such that
y' = x. When referring to local coordinates we shall implicitly assume that
y' = z, and we shall use the letter v to denote the coordinates y?,...,y";

vi=yt, A=2,...,n.

Thus y = (z,v). The standard Schwarz multi-index notation is used throughout;
thus if « = (e, ... a,), then

9* = 3;‘ — 8;‘11 --'(9;‘,:‘ — (92‘1(9;‘22 . "(9;": - 8:‘85,

where 3 = (ag,...,a,).

For k € N = NU {0} U {oo} the spaces Cf. (M) are the spaces of functions
k-times differentiable on M. We have added the subscript ‘loc’ to emphasize the
fact that a function in Cf (M) need not extend to the boundary of M (in this
respect the subscript ‘loc’ does not imply the same sense of ‘local’ as the local
coordinates we have just defined); similarly for k£ > 1 even if the function itself
extends by continuity to M then its derivatives do not have to extend, etc. We
use the symbol C*(M) for the Banach spaces of functions differentiable k-times
on M such that f and its derivatives up to order k can be extended to continuous
functions on M, and equipped with the supremum norm.

Let f; be a sequence of functions in C22(M) and let z; > 0; we suppose that,

loc

given NV € N, there is a sequence s; y—> ©0 and some constants C; y such that
for all @] < N and for all 0 < z < x4,

10y fil < Cinz®™~,
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To express the notion of successive approximations good to all powers of x and
for all derivatives in a precise sense, we shall write

Fed g

if for every n,m € N there exists N € N and a constant C(n, m) such that for all
|| <m and for 0 < z < 24

%(1-34)

Consider a sequence {N;}52,, N; € Ny. f will be said to be polyhomogeneous
if f € C2 (M) and there exists a sequence of functions f;;, € C*°(M) such that

N

f~ i > fixal logha. (A1)

=0 k=0

We write f € A} and define Aphg = U{NJ.}A{NJ'}.

< C(n,m)z".

Remark. As formulated here, the f;; may depend upon z. To avoid this would
require the introduction of local coordinates near the boundary, a specialization
which we do not yet wish to make. However, once we do fix a coordinate system,
then we can Taylor expand each f;; with respect to x to any finite order, so each
fi; has a polyhomogeneous expansion with no log terms, and obtain an expansion
for f with some (other) functions f;; which depend only upon the coordinates v.

A function f(r,v) defined on an open set of the form O = {(r,v) : r €
(rg,00),v € Q} for some suitable set Q will be said to be in C*(0), 0 < k < oo,
if f(1/z,v) € C*(U), where U = {(z,v) : z € (0,1/r¢),v € Q}. Similarly f will
be said to be polyhomogeneous on O if f(1/z,v) is polyhomogeneous near x = 0
onlU.

Let F be a function space over M. A tensor field X = (X°g), where o, (
are some multi-indices, |a| = r, |5] = s, will be said to belong to F' if in local
coordinates as described at the beginning of this section the components X4 of
X are in F.

Let F' be a function space. We shall write that f € r* log” rF if r— log P rf €
F.

Let F, F, be function spaces. We shall write that f € F, + F; if there exist
fo € Fy, a = 1,2, such that f = f; + f,.

The following observations are useful when proving Proposition 2.1:

Proposition A.1.

fer® logﬂ T Aprg, g € 7" log” r Appy => fg € r*TH logﬂ+” rAprg;  (A2)
FeC®R), feC®WN)+Apg/r = F(f) € Apng; (A3)
i€Z, fET Apmy,=>VjEN, & feri Ay, (Ad)
Ya, 0%feriApnm, (A5)
i€z, fer Ay, — / Fertt A, (A6)

R
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Proof. Equation (A 2) is easily proved starting with the following elementary
observations: f,g € Apmg = f + g € Apng; f € 7 log” r C~(OM) (note the
Remark above), g € A,p, = fg € r® log? rApng. Equation (A 3) follows simi-
larly from (A 2) by Taylor expanding F'. Equation (A 4) and (A 5) are elementary.
Equation (A 6) follows by linearity from

J
ZCz’jk’I’i"—l logk T, 1 75 —1,
rilog’ rdr = { k=0
/ log’t'r
j+1

for some coefficients C;jy. m

) 1= —1,

Appendix B. Geodesics in polyhomogeneous metrics

Proposition B.1. Let g be a polyhomogeneous metric (Lorentzian or Rie-
mannian) on a manifold with boundary M, g € Ay, N C°(M).

(i) For any p € OM, k € T,M there exists ¢ > 0 and a unique geodesic I',(s),
s € [0,€), satisfying

L) =p 1,0 =k (B1)

If we write I, = {y*(s)}, then y*(s) are polyhomogeneous functions of s.

(ii)) IfOM > p — k, is a smooth field, k € C*(0M), then the functions y*(s,v)
are polyhomogeneous.

Remark. For a polyhomogeneous metric we have 8g ~ log™* « near M, so that
standard results about geodesics do not apply.

Proof. Let us define
PH(s) = y'(s) — sk* — o,
we thus have
2w :
= P, 9s), (B2)

with
F (4, x,8) = Thg(yy + sk + ) x*x°. (B3)

Let a € (0,3) and let € > 0 be a number to be determined later. Consider the
space

X ={v*x" € C([0,€])}

with the norm

(%, X)lx, = sup |s™*x*(s)| + Suplls_“_1¢“(8)|~

s€[0,€] s€[0,e

Let T : X, — X, be the map

Xos o) — Tod = ([ ) ds, [ Prosds),  B4)
0 0
F* given by (B3). Clearly a fixed point of T satisfies (B1)—-(B2). From the
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estimates
IT'| +18,T'| < Clog" z, (B5)
|0,T'| < Cz~'log" z, (B6)

for some N, it is easily seen that one can choose a constant K and an € > 0
such that T is a contraction mapping from a ball around (0,0) in X, of radius
K into itself, and the result follows by the contraction mapping principle. Once
the solution is known to exist, polyhomogeneity immediately follows from the
equation

(¥, x) =T, x].

If k*(v) is a smooth function of v € dM, then by considering the equations
satisfied by 0%y* (note that for a polyhomogeneous metric 92" satisfies the same
estimates (B 5)—(B 6) as I' itself) one obtains the result by an argument similar
to the one above. |

Let us finally point out that part (i) of Proposition B.1 is still true under the
rather weaker hypotheses

19" | + 19| + 2 P105 9| + °P|050,9, | < C, (B7)

for some constant C, with any 8 > 0. The same proof as above goes through,
except that the exponent a in the norm [[(¢,x)|[x has to be chosen to lie in
(0, B). Gauss coordinates can be constructed for metrics satisfying (B 7) provided
that one moreover has

2 P|048,9u | + 22 P)040,059,| < C, (B8)

where 04 are derivatives in directions tangent to M, while 0,, etc., denotes all
partial derivatives.

Appendix C. The Einstein field equations for the metric (2.1)

Using SHEEP we have derived the Einstein equations for a metric of the form
(2.1). The metric coefficients have been further parametrized as in Proposition
3.2 with the small changes that, to aid comparison with van der Burg (1966), U’
is written as U and U? is written as W cosecf. Derivatives with respect to the
coordinates, which are numbered by

(-'L'Oy Z1, T2, .’1,‘3) = (U, T, 97 ¢5)

are indicated by subscripts. The equations one obtains coincide with those of the
appendix in van der Burg (1966), except for some misprints listed below. If all
terms were moved to the left-hand sides, the left sides would be rR;;/4 in (C1),
2r2R,, in (C2), 2r?Ry3cosect in (C3), —e??(h**R,;)/2 in (C4), e*#(e > Ry —
e’ sin"? O Rg3) /4r in (C5) and € (Rys — (h® Ryp)hy3/2) /(2 cosh 26 sin §) in (C6).

The misprints in the corresponding equations of van der Burg (1966) are:

(i) on p. 121, at the end of the second line of the second equation, a right
parenthesis is missing;

(ii) on p. 122, in the fourth line of the equation the signs of the terms which
contain (3 and (3,83 should be reversed, and

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

///’\ \\

/\
'\

A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A\
£\

y 9

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Gravitational waves in general relativity. XIV. Polyhomogeneity 137

(iii) in the fifth line of the same equation the factor r should be replaced by

r3.

Gy = %r(yf cosh® 26 + 82), (C1)

(r*e?P(e*U, cosh 26 + W, sinh 26)),
= 27%(Byz + 2616, — 2r~' B, — 47,8, cosh 26 sinh 26
—(712 — 27172 + 271 cot §) cosh? 26)
+27r%e®" cosec O(—b13 — 261773 + (Y13 + 27173) cosh 26 sinh 26
+27:85(1 + 2 sinh® 26)), (C2)

(r*e™?P(U, sinh 26 + e~ *"W, cosh 26)),
= 2r%e™ 2 (=815 + 26172 — 26, cot O
—(712 = 27172 + 27 cot 8) cosh 26 sinh 26 — 27, 8,(1 + 2sinh® 26))
+27r% cosec 0( B3 + 26,63 — 2r~ ' B3 + 47183 cosh 26 sinh 26
+(713 + 27173) cosh® 26), (C3)

Vi = 2e* cosecO((Bas + 203 + 26563) sinh 26 + (653 + 65 cot O + Sa7y5 — Y265

+6235 + [263) cosh 26)

—e?P72Y((Bag + B2 + Bacot O + 272 + 262 — 1 — 7y
—37; cot 6 — 2357y2) cosh 26 + (22 + 365 cot 8 + 2328, — 4728,) sinh 26)

—e?2 cosec? 0((Bas + B2 + 272 + 2682 + 733 + 203773 ) cosh 26
+(633 + 20303 + 4303) sinh 26)

—1rte P ((e*UE + e *'W7) cosh 26 + 2U, W, sinh 26)

+37(rUsz 4 rU; cot 0 + 4U; + 4U cot 0) + 1r? cosec (Wi + 4W3), (C4)

(r’y)m cosh 28 + 2r (61 + 6oy1) sinh 26
= 1(mVi + 71V +r ' V) cosh 26 4 27,6,V sinh 26

+1r3e P (ePUT — e W) + 2r 1?72 (Byy + B3 — B2 cot 6)
—1r71e? (85 + B2) cosec? 6 + 771 (8265 — Bs6,) cosec

+3re®” cosec 0((Urs + 2r~'Us) sinh 26 + 46,U; cosh 26)

—ire ® (Wi — Wi cot 8) sinh 26 + 2r~" (W, — W cot 6) sinh 26
+461 (W5 — W cot 6) cosh 26)

—1r(Usa + 2r 'Uy — Uy cot§ — 2r U cot §
+4r U + 471,U + 27,U; + 27,U; + 27U cot @) cosh 26

—1(61Us 4 27165U + 26177U — 6,U cot ) sinh 26

+37 cosec O(Wiz + 2r ' W5 — 4r 'y W — 4y s W — 293, W,
—2v,W3) cosh 26

+r cosec 0(6; W3 — 26,7sW — 27,83 W) sinh 26, (C5)
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(ré)or — 2r7yo7y1 sinh 26 cosh 26
= 1(6Vi 4 61V + 7716V — 297V cosh 26 sinh 26)
—2r 1?72 (Byy + B3 — B2 cot ) sinh 26
—1p71e¥*27 cosec? 0( 333 + (33) sinh 26
—r~'e* cosec §(—PBa3 — 23 + B3 cot @ + Barys — Y2 33) cosh 26
+1r%e 2 ((¥U7 + e 'W?) sinh 26 + 2U; W; cosh 26)
—1r(2602U + 2r ' 8,U + 61Uz + 8,U1 + 61U cot 8
—2(v1Us — 11U cot 8 + 47,7, U) cosh 26 sinh 26)
—Lrcosec 0(26,3W + 2r 16 W + 6 W5 + 855,
+2(y1 W3 — 27y,73W') cosh 26 sinh 26)
—Lre ' (Wip — Wi cot 6 + 2r~ (W, — W cot §)
—4, (W, — W cot 6) cosh® 26)
—1re*” cosec §(Uys + 2r~'Us + 471, U; cosh® 26). (C6)

Appendix D. Expansion in the axisymmetric case

The following formulae give the expansion of the axisymmetric case discussed
at the end of §3. All coefficients, except the last one in each quantity (i.e. v4, Os,
Us and V3) are considered to be functions of u and 6 only: v4, 85, Us and V3 are
written as functions of u, # and r so that the consistency of the approximation can
be checked by looking at the first neglected terms in the equations of Appendix C.
The exponentials of 3 and v are expanded to order r—*.

As a result of the arguments of §2, we know we can expand y as

vy =c(v)r™" + 7 (V)12 + v3.1(v)r 2 log T + 3 (v)r 2 4 Y4 (r,v)r 4,

where we use (v) to denote (u, z*), and the dependence of v, on r allows for logr

terms there. To avoid confusion of subscripts in what follows we use the form f,

for the partial derivatives, where z is a variable name, not a number.
Substitution in (C1) yields

_ _1.2.-2_ 2. .-3_3 —4 1 3 1,,2),.—4 -5
B =—3Cr"" = Zeyr — Jeysar logr 4 (5581 — 3¢v3 — 572)7 4 Bsr 0.

Putting this into (C2) gives
U =—(2ccot® +co)r™* — (§72cot 0 + 372,0)r° log 7 + r~°Us
+(2¢72,0 + 4cy2 c0t 0 + 573,10 + 37,1 cot O)r~* log 7
+(3¢% cot 0 + §cPcp + Feracot§ — SeUs + 3 C’Yza + $72c0
+:ys 1 cot 0+ 3yscot O + Loz s o+ s )0t + 77U,

where Uj is as yet arbitrary. Its u-derivative is given by the Ry, Einstein equation,
and on substituting van der Burg’s form for the coefficient

Us = 4c* cot @ + 3ccy + 2N

we find agreement with his equation for N,,.
Next we use (C4) to obtain
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V=r—2M+7r""logr(2cot vy, — %72 -+ %72,33)

+r_1(72,9 cot 6 + g(c,g)2 + %’Yz,ee — %Ug,o + 4% cot? 9 — %Cz - %72
+3ccpo + Leccot§ — 3U; cot 6)

+7r 72 log 7(8cy, cot? 6 + deyy g cot @ + 4y g cot 6 + 2¢.9v2
—%’73,1,90 - %’73,1,0 cot @ + 7v3,1)

+772(4c® cot® § + £c® + 2cPc o cot 0 — TcPc o + Heyapcot§ + Loy 00
+Iv2c6cot O + 272¢00 + £Co72,0 + 5CY2 COt" O — ey, — 3cUs cot §
—3Usco — Sy3,1,00 — 2Y3,1,0 €0t 0 + 3931 — 373,00 — 23,0 COL O + 73)

+r 3V,

where M is as yet undetermined, but will have a u-derivative given by the Ry
equation as

M,u = %COt 0C,u9 — C7,,_,‘2 —Cu + %Cyugg.
On substituting all these expansions into the equation (C5) we find that c,, is

undetermined, and 7., = 0 as expected. s 1,, is then u-independent so we can
integrate with respect to v and get

V3,1 = Va1 + (372,00 + §72,0 cOt O — 25 cot® 8 — v2)u,

where 73, is a freely specifiable function of 6.
The next term in (C5) gives the u-derivative of 5 as

Yau = Sccgg + 2ecgcot O+ 2(cy)® — cot? O — 3% + teM
— 572,00 = 1572,0 €Ot 8 + 32 c0t? @ — o — §Us o + 5Us cot 8

and we cannot integrate this explicitly since we do not know the u dependence
of ¢ and hence of M and U;. We can check, using

v3=C — %63
to get van der Burg’s form of the coefficient, that our result agrees with his when

Y2 = 0.
Finally we can solve the next order in (C5) for <4, and find that the result
contains log r terms but no higher powers of logr, and that

Yau sin® 0 = G + EG’
where G is as in (3.12) and
. . 9 .
F =log 7((—5572,000 sin® 0 + 72,90 cos O sin® 6 + 52 cos® Osin 6
1 :.3 2 3 1 2
+572,08in° 0 — 25 cos® 6 — 32 cos Osin 0)u
—2cy,cosfsin® 6 — Leyapsin® 0 — 1(75,) 0 8in° 6 + 373, cos fsin® §)
1 . 3 1 .9 7 2
+(— 3572000 Sin° 0 + 552,09 COS ' 8in” 6 + 55720 cos” fsin §
+2,8i0° § — Ly; cos® 6 — 22, cos fsin® O)u
1 .3 1 02 2 : 3 1 « 3
—273,08in" 0 + Sy3 cosOsin” 0 + Sy2cpsin” 6 + 5cy208In° 6
+5¢y,cos@sin® 0 — 1P cosfsin? 0 — LcPcpsin® 0 + LeUssin® 0
6C72 12 8- “ 4
—3(431) 050’ + 247 | cosBsin’ 6.
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Since G contains no log r terms, it follows that Q as defined in (3.13) is conserved.
(We may again note that if 7, = 0 = 73 ; this agrees with van der Burg (1966).)
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